

KIT Department of Informatics Institute for Anthropomatics and Robotics (IAR) High Performance Humanoid Technologies (H²T)

Robotics I, WS 2024/2025

Exercise Sheet 5

Date: January 22, 2025

Prof. Dr.-Ing. Tamim Asfour Adenauerring 12, Geb. 50.19 Web: https://www.humanoids.kit.edu/

 $\underline{\text{Exercise } 1}$

(Friction triangles)

Let $\mathbf{c} = (4,3)^{\top}$ be the center of mass of a two-dimensional object shown in Figure 1. In the following, point contacts with friction are assumed. The contact forces are represented by friction triangles.

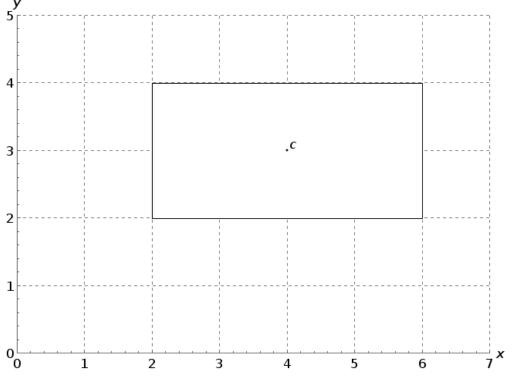


Figure 1: A two-dimensional object with center of mass c.

- 1. Calculate the opening angle α of a friction triangle for the friction coefficient $\mu = 1$.
- 2. Let $\mathbf{p_1} = (3, 4)^{\top}$, $\mathbf{p_2} = (5, 2)^{\top}$ and $\mathbf{p_3} = (3, 2)^{\top}$ be contact points and let f_1 , f_2 and f_3 be the corresponding force vectors.

$$\mathbf{f_1} = \begin{pmatrix} 0 \\ -\frac{1}{2} \end{pmatrix}, \quad \mathbf{f_2} = \begin{pmatrix} 0 \\ \frac{1}{2} \end{pmatrix}, \quad \mathbf{f_3} = \begin{pmatrix} 0 \\ \frac{1}{2} \end{pmatrix}$$

Draw the force vectors and the corresponding friction triangles at the contact points $\mathbf{p_1}$, $\mathbf{p_2}$ and $\mathbf{p_3}$.

3. Determine the two force vectors at the edges of the friction triangles.

Exercise 2

(Grasp Wrench Space)

Let $\mathbf{c} = (4,3)^{\top}$ be the center of mass of a two-dimensional object shown in Figure 2 and let $\mathbf{p_1} = (3,4)^{\top}$, $\mathbf{p_2} = (5,2)^{\top}$ and $\mathbf{p_3} = (3,2)^{\top}$ be contact points. The contact forces are as follows: $\mathbf{f}_{a,1} = (0.5, -0.5)^{\top}$, $\mathbf{f}_{b,1} = (-0.5, -0.5)^{\top}$, $\mathbf{f}_{a,2} = \mathbf{f}_{a,3} = (-0.5, 0.5)^{\top}$, $\mathbf{f}_{b,2} = \mathbf{f}_{b,3} = (0.5, 0.5)^{\top}$.

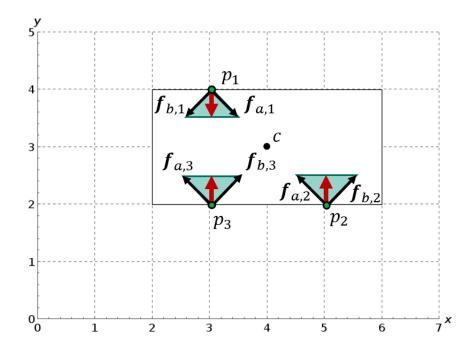


Figure 2: A two-dimensional object with center of mass c.

1. Calculate the *wrenches* resulting from the contacts in 2D.

Hint: In the two-dimensional case, the moment τ generated by a contact force **f** is a scalar that is calculated as follows: $\tau = \mathbf{d} \times \mathbf{f} = d_x \cdot f_y - d_y \cdot f_x$, where **d** is the vector from the center of mass to the contact point.

- 2. In Figure 3, draw the projection of the *Grasp Wrench Space* onto the (f_y, τ) plane for the contact points $\mathbf{p_1}$ and $\mathbf{p_2}$.
- 3. In Figure 4, draw the projection of the *Grasp Wrench Space* onto the (f_y, τ) plane for the contact points $\mathbf{p_1}$, $\mathbf{p_2}$ and $\mathbf{p_3}$.

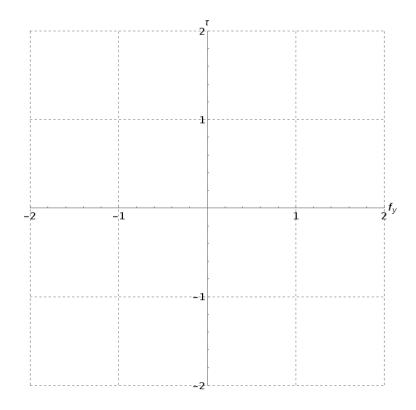


Figure 3: The dimensions f_y and τ of the Grasp Wrench Space.

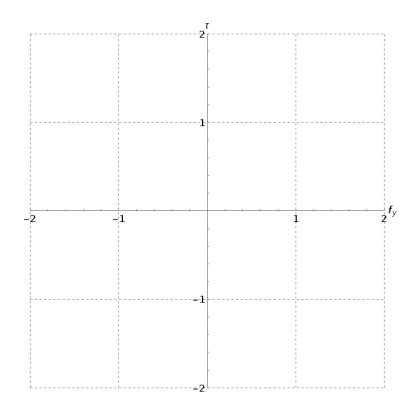


Figure 4: The dimensions f_y and τ of the Grasp Wrench Space.

Exercise 3

(Force closure)

Let $\mathbf{c} = (4,3)^{\top}$ be the center of mass of a two-dimensional object shown in Figure 5. At the three contact points $\mathbf{p_1} = (3,4)^{\top}$, $\mathbf{p_2} = (5,2)^{\top}$ and $\mathbf{p_3} = (3,2)^{\top}$, the following wrenches occur at the edges of the friction triangles:

$$\begin{split} \mathbf{w}_{a,1} &= (0.5, -0.5, 0)^{\top}, \qquad \mathbf{w}_{b,1} = (-0.5, -0.5, 1)^{\top}, \\ \mathbf{w}_{a,2} &= (-0.5, 0.5, 0)^{\top}, \qquad \mathbf{w}_{b,2} = (0.5, 0.5, 1)^{\top}, \\ \mathbf{w}_{a,3} &= (-0.5, 0.5, -1)^{\top}, \qquad \mathbf{w}_{b,3} = (0.5, 0.5, 0)^{\top}. \end{split}$$

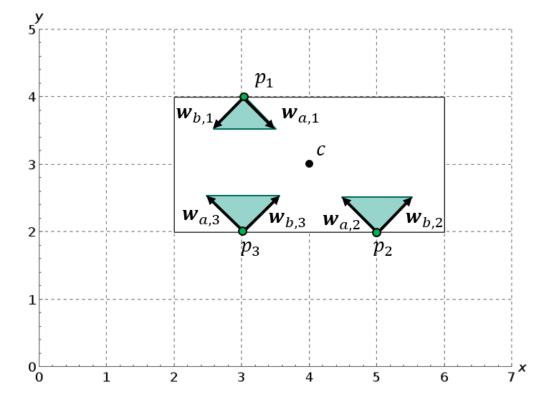


Figure 5: A two-dimensional object with center of mass c.

- 1. Is the three-finger grasp at the points $\mathbf{p_1}$, $\mathbf{p_2}$ and $\mathbf{p_3}$ force-closed? Justify your answer.
- 2. Is the two-finger grasp at the points $\mathbf{p_1}$ and $\mathbf{p_2}$ force-closed? Justify your answer.
- 3. How would you calculate the ε -metric for the two grasps? Specify whether ε is greater than, less than or equal to 0 for the two grasps.

Exercise 4

(Medial Axes)

The medial axis of a two-dimensional region $G \subset \mathbb{R}^2$ is the set of centers of the maximum circles in G. A circle K is a maximum circle in G if $K \subseteq G$ and if there is no circle K' for which $K \subset K' \subseteq G$ is true. Draw the medial axes of the regions G_1, \ldots, G_5 .

